
COCV 2006

Coinductive Verification of Program
Optimizations using Similarity Relations

Sabine Glesner Johannes Leitner Jan Olaf Blech

Institute for Software Engineering and Theoretical Computer Science,
FR 5-6, Technical University of Berlin, 10587 Berlin, Germany

Email: {glesner|leitner|blech}@cs.tu-berlin.de
URL: http://pes.cs.tu-berlin.de/

Abstract

Formal verification methods have gained increased importance due to their ability
to guarantee system correctness and improve reliability. Nevertheless, the question
how proofs are to be formalized in theorem provers is far from being trivial, yet
very important as one needs to spend much more time on verification if the formal-
ization was not cleverly chosen. In this paper, we develop and compare two differ-
ent possibilities to express coinductive proofs in the theorem prover Isabelle/HOL.
Coinduction is a proof method that allows for the verification of properties of also
non-terminating state-transition systems. Since coinduction is not as widely used
as other proof techniques as e.g. induction, there are much fewer “recipes” avail-
able how to formalize corresponding proofs and there are also fewer proof strategies
implemented in theorem provers for coinduction. In this paper, we investigate for-
malizations for coinductive proofs of properties on state transition sequences. In
particular, we compare two different possibilities for their formalization and show
their equivalence. The first of these two formalizations captures the mathematical
intuition, while the second can be used more easily in a theorem prover. We have
formally verified the equivalence of these criteria in Isabelle/HOL, thus establishing
a coalgebraic verification framework. To demonstrate that our verification frame-
work is suitable for the verification of compiler optimizations, we have introduced
three different, rather simple transformations that capture typical problems in the
verification of optimizing compilers, even for non-terminating source programs.

Key words: coinduction, operational semantics, compiler
verification, theorem prover, Isabelle/HOL

1 Introduction

Formal verification within interactive or automated theorem provers has be-
come more and more important during the last ten years due to several rea-
sons: First of all, machine proofs guarantee that no special cases have been

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Glesner, Leitner, Blech

overlooked and, hence, that the verified properties will indeed hold under all
specified circumstances. Secondly, mechanized theorem provers allow for man-
aging even large correctness proofs for large systems that cannot be managed
by humans without machine help due to sheer complexity. And last but not
least, the efficiency and user-friendliness of theorem provers has improved so
much over the last years that they can be used in real-life verification prob-
lems. Nevertheless, there are still many unsolved problems. Especially the
question how proofs are to be formalized in a theorem prover is not trivial at
all. An unclever formalization might lead to clumsy proofs, thus complicating
the proof unnecessarily.

In this paper, we investigate correctness proofs for transformations, i.e.
proofs that show that transformations preserve the semantics of the systems
modified by them. In particular, we address non-refining transformations that
do not preserve the syntactical structure of programs. A transformation is
called refining if it does not alter the structure of programs but only specifies in
more detail how the individual computations are to be executed. Non-refining
transformations are important in optimizing compilers because they allow for
code transformations that do not adhere to the original program structure.
Correctness proofs for non-refining transformations of entire programs pose the
problem that they cannot be composed directly from the correctness proofs of
their parts. Moreover, we address the problem of verifying transformations of
non-terminating programs. For these purposes, we need a notion of correctness
that captures the state transition behavior of programs.

As application examples for our methodology, we consider optimizing com-
pilers that typically do need to transform programs by non-refining optimiza-
tions in order to achieve the best possible speed-up. The area of compiler
verification has been a major area of research during the past decade. Never-
theless, most of this research focuses on rather simple, refining transformations
which preserve the structure of programs as well as on terminating programs.
Especially for compilers, the restriction to terminating programs is not ade-
quate because many non-terminating programs (e.g. operating systems, data
bases, software in reactive systems) exist which need to be compiled correctly
such that their state transition behavior is preserved.

Our approach is based on the observation that each program defines a
state transition system and can be considered as an element of a suitable
final coalgebra. We present a framework for defining programming language
semantics by assigning each program such an element of a coalgebra, i.e. a
function that transforms input states into successor states. For each initial
state and program, this semantics specifies an element of such a final coalgebra,
namely a coinductively defined (lazy) list of a potentially infinite number of
program execution states. We also present our formalization of this coalgebraic
semantics in Isabelle/HOL.

Furthermore, we show that this notion of programming language seman-
tics is sufficiently powerful for the verification of also non-refining program

2

Glesner, Leitner, Blech

transformations. In general, we consider two programs as being semantically
equivalent iff their semantics, i.e. their corresponding elements of a suitable
coalgebra are the same. Nevertheless, in many cases, one wants to regard
two programs as semantically equivalent even though their state transition
sequences (for an arbitrary but fixed initial state) are not completely identical
but only similar. To be able to also capture these cases, we define two similar-
ity relations on state transition sequences: abstractions and collapsings. For
the latter, we state two different definitions and prove their equivalence within
the theorem prover Isabelle/HOL. The first definition captures very well the
mathematical intuition while the second definition is much better suited for
the use within Isabelle/HOL. This is a typical example for the experience
that the choice of formalization in a theorem prover is of utmost importance.
With our equivalence proof, we bridge the gap between an intuitive notion and
one for efficient use in a theorem prover, thus simplifying the construction of
mechanized proofs considerably.

We have formalized our framework for the coinductive definition of pro-
gramming language semantics together with the equivalence proof for the two
definitions of collapsings within the theorem prover Isabelle/HOL [NPW02].
Moreover, also within Isabelle/HOL, we have instantiated our framework with
a simple imperative programming language together with example proofs for
program equivalence for typical cases. With these example proofs, we show
that our framework is flexible enough for the verification of a variety of opti-
mizing program transformations in compilers that are not refining.

This paper is structured as follows: In Section 2, as a motivation, we
discuss typical examples of compiler transformations and the problems arising
in their verification. We also indicate that a coalgebraic definition of program
semantics together with similarity relations as introduced in this paper is
sufficiently powerful to verify these transformations. In Section 3, we give
a short introduction to the theory of (co)algebras and (co)induction tailored
to our needs. In Section 4, we define semantics of imperative programming
languages coalgebraically by assigning each program and each initial state an
element of a suitable final coalgebra. The notion of similarity relations is given
in Section 5. We demonstrate their application in the verification of program
transformations in Section 6. Finally we discuss related work in Section 7 and
conclude in Section 8. Our Isabelle formalization is presented along the way
throughout this paper.

2 Motivation: Verifying Compiler Transformations

As simple, nevertheless typical examples for the situations arising in the
verification of compiler transformations, let us consider three programs and
optimizations thereof. The first example, cf. Figure 1, deals with a non-
terminating program that contains unreachable code (after the while-loop).
Since the while loop does not terminate, the last assignment i := 5 will never

3

Glesner, Leitner, Blech

i := 1; while true do i := i + 1 od; i := 5 i := 1; while true do i := i + 1 od

Fig. 1. Eliminating Unreachable Code

i := 0;

while i < 1000 do

l := 0;

a[i] := i;

i := i + 1 od

i := 0;

l := 0;

while i < 1000 do

a[i] := i;

i := i + 1 od

Fig. 2. Shifting of Loop-Invariant Code

i := 0; s := 0;

while i <= N do

s := s + i; i := i + 1

od;

Sum := s

Sum := N ∗ (N + 1)/2

Fig. 3. Two Different Programs Both Computing the Gauss Sum

be reached and could be eliminated. To prove that the program pruned in
this way behaves as the original one, we need to coinductively show that the
semantics of both of them are in a bisimulation relation which implies that
they are equal (cf. Section 6). Induction as proof principle would not suffice
as it allows us only to prove statements over finite state transition sequences,
cf. also our detailed discussion of the insufficiency of induction in Section 7.

The second example concerns the shifting of loop invariant code out of
loop bodies, cf. Figure 2. Since the assignment l := 0 does not depend on any
value computed or modified in the loop body, this assignment can be executed
already before entering the loop, thus computing it only once instead of in
every iteration of the loop. The verification of this transformation is not as
straight-forward as in the first example because the state transition sequences
are not completely equal but might differ in the number of repetitions of the
same state. We clearly do not want to distinguish between the two sequences
but instead want to be able to collapse any finite number of identical states.
This idea is captured in the notion of collapsings, cf. Section 5.

Finally, consider the two programs in Figure 3 (with N being a non-
negative integer), both computing the Gauss sum. Their semantics, i.e. their
state transition sequences, are different because the first program contains
computations which involve the variables i and s while the second does not
need any auxiliary variables. Hence, from a strict semantic point of view,
these two programs cannot be semantically identical. Nevertheless, if one for-
gets about variables i and s, i.e., if one projects each state on only that part
one is interested in, the resulting state transition sequences are similar and
can be collapsed into the same. In Section 5, in particular in Subsection 5.2,

4

Glesner, Leitner, Blech

we define this idea formally by introducing the notion of being similar modulo
an abstraction function.

3 (Co)Algebras and (Co)Induction

In recent years, coalgebraic methods, in particular coinduction, have gained
increased interest and importance in the specification of and reasoning about
state-based systems [JR97]. In Subsection 3.1 we summarize the most im-
portant concepts in this area. In Subsection 3.2 we show how the coin-
ductive definition and proof principle can be used in the theorem prover Is-
abelle/HOL [NPW02].

3.1 Coalgebras and the Coinductive Proof Principle

Algebras and coalgebras are defined with respect to functors. Given a functor
T and a set X, a T -algebra is a set supplied with a T -structure, i.e. is defined as
a function a : T (X) → X. For example, the structure of the natural numbers
is defined as an T -algebra [0, S] : 1 + IN → IN for the functor T (X) = 1 + X.
Initial T -algebras are characterized by the fact that there exists a unique
homomorphism f from the initial T -algebra into any other T -algebra. Initial
T -algebras are the least fixed point of the functor T .

Dually, T -coalgebras are defined as functions c : X → T (X). If one thinks
of the elements in X as being states, then a coalgebra maps a given state
x ∈ X into one or several successor states together with observations that
can be made in the state x. In this setting, a state-based system is charac-
terized by the observations that can be made during its run. For example, a
deterministic, not necessarily terminating transition system is described by a
T -coalgebra [stop, 〈value, next〉] : X → T (X) for the functor T (X) = 1+A×X
where A is an arbitrary non-empty set of observations. Given a state x ∈ X,
[stop, 〈value, next〉](x) is either the terminating state stop in which no observa-
tion is possible, or there exists the successor state next(x) and the observation
value(x) ∈ A.

Final T -coalgebras, as the dual concept to initial algebras, are characterized
by the existence of a unique homomorphism from any other T -coalgebra into
the final T -coalgebra. For the functor T (X) = 1 + A×X, the final coalgebra
is [empty , 〈head , tail〉] : A∞ → A×A∞. A∞ is the set containing all finite and
infinite sequences with elements from A. Final T -coalgebras, if they exist, are
the greatest fixed point of the functor T . For polynomial functors and even
for the finite power set functor, final coalgebras exist. Polynomial functors are
completely sufficient for our purposes.

Coinduction is – as well as induction – a definition and proof principle.
The definition principle uses the fact that homomorphisms from arbitrary T -
coalgebras into the final T -coalgebra exist, while the proof principle uses their
uniqueness. Especially bisimulation is an important coinductive proof rule. It

5

Glesner, Leitner, Blech

says that each binary relation on a final coalgebra that is closed under the
operations of the coalgebra is contained in the equality relation.

3.2 Coalgebras and Coinduction in Isabelle/HOL

Coalgebraic types are available in Isabelle/HOL in the extension described in
[Pau04]. This extension makes use of coinductively defined sets, a definition
principle available in Isabelle/HOL, and uses it to define lazy lists. As an
example, consider the coinductive definition of possibly infinite lists as stated
in [Pau04]. The following definition specifies the set of lazy lists llist(A) over
a given set A.

coinductive llist(A)
intros

NIL I : NIL ∈ llist(A)
CONS I : [[a ∈ A ; M ∈ llist(A)]] =⇒ CONS a M ∈ llist(A)

Based on this definition, the coinductive data type llist is derived. For details
of this specification, we refer to [Pau04].

For reasoning about equality on coalgebraic types, we use the concept of
bisimulations. A bisimulation is a binary relation ∼ on a coalgebraic type that
is closed under the operations of the coalgebra. For lazy lists, this means that
from CONS a l ∼ CONS a′ l′, we can deduce that a = a′ and l ∼ l′. In
Isabelle/HOL, we have stated this definition where we use the symbol ♦ to
denote the empty list and x ; L as abbreviation for CONS x L (read “;” as
“leads to” in the sense that one state is transformed into another):

bisimulation :: "(’a llist × ’a llist) set ⇒ bool"

bisimulation R == ∀ x ∈ R. (x=(♦,♦) ∨
(∃ x1 x2 L1 L2. x = (x1;L1 , x2;L2) ∧ x1=x2 ∧ (L1,L2)∈R))

The lazy list package for Isabelle [Pau04] provides a slightly different form of
bisimulations:

llist_equalityI:

[[(l1, l2) ∈ r; r ⊆ llistD_Fun (r ∪ range (λx. (x, x)))]]
=⇒ l1 = l2

Since our definition is closer to the one introduced in [JR97], we prefer it in
our proofs. We have easily shown that it implies the one required to apply
llist equalityI (for the detailed Isabelle proof, we refer to [Lei05]):

pauls_equiv :

bisimulation r =⇒ r ⊆ llistD_Fun (r ∪ range (λx. (x, x)))

To use coalgebraically defined types, we need to be able to define not neces-
sarily terminating recursive functions. For lazy lists, llist corec allows us to
define a function ′a −→′ b llist as follows where f is some partially defined

6

Glesner, Leitner, Blech

function f :′ a ⇀′ b× ′a and 1 and 2 the usual projection functions:

llist corec x f =

♦ if f x = ⊥

(f x)1 · llist corec (f x)2 f else

These definitions are the basis for our coalgebraic framework for the semantics
of imperative programming languages and for correctness proofs of compiler
transformations.

4 Programs as Elements of Coalgebras

Operational approaches to the formal semantics of imperative programming
languages typically define the semantics of a given program as the sequence of
states reached during the run of the program or, more generally in case of inde-
terminism, as a state transition system. Hence, it is a natural consequence to
regard programs as elements of suitable coalgebras, namely as functions that
take a state as input and output a new state together with possible observa-
tions. This view is in line with the intention of the two classical approaches to
operational semantics which are abstract state machines (ASMs) [Gur95] and
structural operational semantics (SOS) [Plo81]. We concentrate here on SOS
but all our developments can be applied to ASMs as well. This holds because
every SOS semantics can be transformed into an equivalent ASM semantics
and vice versa [Gle03].

4.1 Structural operational semantics (SOS)

Structural operational semantics (SOS), also called small-step semantics, con-
centrates on individual steps of program execution and how these single steps
are integrated in the overall execution. Assumptions of inference rules for-
malize smaller steps while their embedding into the larger program context is
defined in the conclusion. Individual steps are described by axioms. Such an
individual step is either termination of execution < p, σ > → σ′ in the final
state σ′ or it is a state transition < p, σ > → < p′, σ′ > denoting that the
execution of p in state σ yields a new program p′ to be executed in the suc-
ceeding state σ′. p′ is often called continuation. The conclusions of inference
rules define the embedding of such program parts into their larger context. As
typical examples for small-step definitions, consider these inference rules:

7

Glesner, Leitner, Blech

<S1,σ> → <S′
1,σ

′>
<S1;S2,σ> → <S′

1;S2,σ′>
Eval(cond)=true

<if cond then S1 else S2,σ> → <S1,σ>

<S1,σ> → σ′

<S1;S2,σ> → <S2,σ′>
Eval(cond)=false

<if cond then S1 else S2,σ> → <S2,σ>

< skip, σ > → σ

< while cond do S, σ > → < if cond then (S;while cond do S) else skip, σ >

The first two inference rules in the left column describe how the execution
of a sequence of statements S1 is integrated into a larger context, namely
the sequence of statements S1; S2. The first two rules on the right-hand side
specify the execution of the if-statement. The first axiom defines the effect of
the skip-statement. The last axiom describes the while-loop by reducing its
semantics to the semantics of the if-statement. This semantics is deterministic,
as a simple case distinction over the possible states and continuation programs
shows.

In a small-step semantics, the program to be executed is an explicit part
of the state. Each state < p, σ > contains a continuation program p. In the
initial state, p is the original program while in the final state, p is simply the
empty program. The axioms and inference rules of a small-step semantics
define how to rewrite this program during each state transition.

4.2 Coalgebraic Semantics for SOS

We define the operational semantics of programming languages by a function
that maps each program together with an initial state to an element of the
final coalgebra of the functor T (X) = 1 + A×X where A is the set of states
reached during computation. The carrier set of this coalgebra is A∞. This
means that the semantics of a program is described by a finite state transition
list if program execution terminates and by an infinite state transition list in
case of non-termination.

SOS defines semantics of programming languages as a function that maps
tuples < p, a > to tuples < p′, a′ >, thereby denoting that the execution of p
in state a yields a new program p′ to be executed in the succeeding state a′,
or, in case that program execution terminates, as a mapping of < p, a > to
a′ which is a final state. Hence, each SOS semantics can be considered as a
function that takes a program p and an initial state a as input and iteratively
defines a finite or infinite list with elements of A.

Hence, each SOS semantics corresponds to a coalgebra with the coalgebra
operation [stop, 〈value, next〉]. stop represents program termination. Otherwise
the current state is observable and denoted by the function value. The rest

8

Glesner, Leitner, Blech

of the observable state transition sequence is obtained by applying the func-
tion next to the current state. Given an SOS semantics, we define a function
[[SOS]] : A × P → A∞ coinductively as the unique coalgebra homomorphism
in the diagram below:

A× P
[[SOS]] //___________

[stop,〈value,next〉]
��

A∞

[empty,〈head,tail〉]
��

1 + A× (A× P)
id+(id×[[SOS]])

//______ 1 + A× A∞

The defining equations of [[SOS]] are:

[[SOS]](a, p) =



cons(value(a, p), next(a, p)) if [stop, 〈value, next〉](a) 6= stop

i.e. if < p, a > → < p′, a′ >

or if < p, a > → a′

() if [stop, 〈value, next〉](a) = stop

i.e. if no successor state exists

This definition assigns each program and each initial state an element of the
final coalgebra A∞ which is the final coalgebra of the functor T (X) = 1+A×X.

5 Similarity Relations

As demonstrated by the examples in Section 2, we might consider the behavior
of two different programs being equivalent even though their state transition
sequences are not identical. In this section, we define two kinds of similarity
relations on lists. The first, which we call collapsings, allows us to collapse
any finite number of consecutive identical states to just one single state in a
given state transition sequence. Collapsings are vital for verifying compiler
optimizations that change the number of execution steps in a certain program
part. A very simple example is the elimination of no-ops or skip statements.
A slightly more complicated example on machine code level is the replacement
of several simple operations by another more complicated equivalent operation
or the bundling of simple operations so that they can be executed in one step.
This is especially important when verifying optimizations for modern VLIW
(very long instruction word) processors like the Intel Itanium architecture.
These optimizations can easily be proved correct with the notion of collaps-
ings. In Subsection 5.1, we introduce two different definitions for collapsings
and summarize the proof for their equivalence in Isabelle/HOL. The second
kind of similarity relations, abstractions, allows us to simplify state transition
sequences by applying an abstraction function element-wise to the contained
states. Abstractions are defined in Subsection 5.2.

9

Glesner, Leitner, Blech

5.1 Collapsing Relations

Collapsings are binary relations on sequences which capture the idea that
we want to consider any finite subsequence of consecutive equal states to
be equivalent to only one occurrence of that state by collapsing this finite
sequence to one single state. In principle, there are two ways to approach the
definition of collapsing relations. In the rest of this subsection, we present our
two alternative definitions of collapsings and their equivalence proof within
Isabelle/HOL.

5.1.1 Similarity using a merging function

Our first approach to collapsings is based on a unique minimal form for a
sequence, called the merging of the sequence. This is the sequence in which all
finite repetitions of an element are collapsed to one single occurrence of that
element. Two lists are considered similar if their mergings are contained in
a bisimulation. The definition of merging functions requires formalizations of
finite prefixes and subsequences of potentially infinite sequences. In particular,
we require the notion of a maximum finite prefix which is the (length-maximal)
prefix of equal elements of a sequence. In Isabelle/HOL, this can be expressed
by the following predicate:

is_max_prefix p L ≡
p prefixes L ∧
∃ x. set p = {x} ∧
∀ other. (other prefixes L ∧ ∃ x. set other = {x})

−→ size other ≤ size p

Since our sequences are potentially infinite, such a prefix does not necessa-
rily need to exist. E.g. if our list is the infinite repetition of a single state 1 ,
no maximum finite prefix exists.

In our formalization, we have also defined the function
split_finite_prefix which splits the maximum prefix off of a sequence (if
it exists), returning the prefix element and the rest of the list, or None if the
list is empty:

split_finite_prefix L ≡
case L of ♦ ⇒ None

| x ; L2 ⇒
if ∃ p. is_max_prefix p L then

Some (x, cut_maxn (size (max_prefix L)) L)

else Some (x, L2)

If the list does not have such a prefix, only the first element is split off. Ap-
plying this function corecursively to a lazy list yields the desired merging
function:

merging L ≡ llist_corec L split_finite_prefix

1 For abbreviation, such a list is called boring.

10

Glesner, Leitner, Blech

The merging function defined in this way does exactly what we want:
It collapses sequences of equal elements into one single occurrence of that
element. If the list is an infinite repetition of some x, then the merging function
behaves as a simple copy function since a maximum prefix never exists. Note
that the merging function is not computable because split_finite_prefix is
not computable. This is also the reason why the proof that two lists are similar
cannot be automated. For such a proof, one needs to find a bisimulation
which contains the pair of their mergings. In concrete cases, this can be a
tedious task. For finite lists, we have the possibility to explicitely name all
the maximum simple prefixes in order to collapse them into single (equal)
elements. For infinite lists, we must exhibit some structure in our lists, such
that whenever we remove a maximum simple prefix from both lists, we can do
so again, etc. Reasoning about similarity of infinite lists becomes easier when
using a directly defined relation, as introduced below.

5.1.2 Defining a similarity relation directly

Alternatively, we coinductively define a relation ≈ using the following intro-
duction rules where l ∼= p denotes the case that both l and p are simple
x-prefixes, i.e. finite repetitions of an element x: 2

coinductive "absRel"

intros
nil : "♦ ≈ ♦"
step : " [[p∼=q ; L ≈ M]] =⇒ p@L ≈ q@M"

This definition expresses that the empty list is similar to the empty list, and
if two lists are similar then we can prepend two simple x-prefixes of different
length but with the same element x to them. Although this definition is
short, concise and – as we shall see lateron – easy to use in proofs, one cannot
instantly see that it is equivalent to our first definition of collapsings based
on the merging function. The most striking problem is that we cannot “walk
back”. This means that when P ≈ Q holds for some P and Q, we only know
that there is some split of P and Q such that the respective prefixes of P
and Q are finite x-prefixes for some x and that the suffixes are again similar
but there is no way to constructively determine this prefix-suffix-pair, though.
Proofs for such properties of coinductive as well as inductive sets often make
use of the cases rule, the logical equivalent of “walking back” an introduction
step. Applying this rule to a statement of the form A ≈ B only yields the
weak statement that such a split exists, which is not sufficient for most uses.
To still make this definition useful, we prove a strengthened cases rule: We
show that whenever we split our sequences at the position of the first change,
i.e. after the maximum prefix defined in the last section, we retain similarity:

lemma case_strong :

" [[p@L≈q@M ; is_max_prefix p p@L ; is_max_prefix q q@M]] =⇒ L≈M "

2 The symbol @ denotes the append operation on lists.

11

Glesner, Leitner, Blech

With this lemma, we have proved abstract properties (like transitivity) of
our relation ≈, cf. [Lei05] for details. Moreover, this rule is an important
bridge between our two definitions of similarity which we need to prove their
equivalence.

5.1.3 Proving equivalence

The two definitions for collapsings are equivalent:

merging(L1) = merging(L2) ⇐⇒ L1 ≈ L2

One direction of the proof is simple. We show that every lazy list is similar
to its own merging. A shortened version of this direction of the proof is given
here in ISAR [Wen02] notation:
lemma abs_sim : shows "A ≈ merging A"

proof -

let ?X = "
⋃

L. {(L, merging L) }"

have "∀ x. x ∈ ?X −→ (x = (♦ , ♦) ∨
(∃ L M p q. x = (p@L, q@M) ∧ p∼=q ∧ (L, M) ∈ ?X ∪ absRel))"

proof -

{ fix x assume "x ∈ ?X"

then obtain L where x_form : "x = (L, merging L)" by auto

hence "x = (♦ , ♦) ∨
(∃ L M p q. x = (p@L, q@M) ∧ p∼=q ∧ (L, M) ∈ ?X ∪ absRel)"

proof cases

assume "L=♦" show ?thesis by simp add: lnil_abs_invariant

next
assume L_not_empty : "L 6=♦"
then obtain l and M where L_form : "L=l;M" by simp add: l3

thus ?thesis

proof cases

assume "boring L" hence "x = ([l]@M , [l]@M)" by auto

thus ?thesis by (unfold sameRel_def , auto intro : sim_refl)

next
assume "¬ boring L"

then obtain pmax where is_mp: "is_max_prefix pmax L" ...

moreover then obtain suffix where lsplit: "L=(pmax@suffix)" ...

moreover from is_mp and L_form have pml : "set pmax = {l}" ...

ultimately have "merging L = l ; merging suffix" ...

hence " x = (pmax@suffix, [l]@(merging suffix))" ...

moreover have "pmax ∼= [l]" by simp add: sameRel_def

ultimately show ?thesis by (auto)

qed
qed }

thus ?thesis by blast

qed
moreover have "(A, merging A) ∈ ?X" by auto

ultimately show ?thesis by (rule_tac X="?X" in absRel.coinduct, simp)

qed

Having thus proven that L ≈ merging(L), we are able to complete the
proof for one direction, namely merging(L1) = merging(L2) =⇒ L1 ≈ L2,
since ≈ is an equivalence relation. The other direction poses more difficulty.
Fortunately, we have our “strengthened cases rule”. Using it, we show that

X = {(merging(x), merging(y)) | x ≈ y}
12

Glesner, Leitner, Blech

is a bisimulation, which requires that

(merging(x), merging(y)) =



(♦,♦)

or

(a ; merging(x′), a ; merging(y′))

where x′ ≈ y′

Since we now know that we can remove a maximum finite α-prefix and
the lists remain similar, we choose the corresponding suffixes as x′ and y′,
respectively (and α for a). Due to the definition of the merging function as
the removal of just this maximum prefix, the second requirement is also true.

The equivalence between the two definitions of collapsings turns out to be
immensely useful. In our experiments, we found that while it is relatively sim-
ple to use the coinduction rule of our similarity relation (the second definition
variant), it is much more difficult to show that the image of two different lazy
lists under a corecursively defined function (the merging function in the first
definition alternative) is equal.

5.2 Abstractions from Irrelevant Details

Reconsider the two programs computing the Gauss sum in Figure 3 which are
not semantically identical, nevertheless similar if one ignores the variables i
and s and projects each state on only that part one is interested in. In this
subsection, we introduce the idea of simplifying states by abstraction functions
formally.

Definition 5.1 [Abstractions on Sequences] Let f : A → A be a function that
modifies states in A. Then we define coinductively a function Tf : A∞ → A∞

by

head(Tf (l)) = Tf (head(l)) and tail(Tf (l)) = Tf (tail(l)).

Tf transforms a given sequence by applying f to each element in the original
sequence. Tf (l) is called an abstraction of l with respect to f . �

Definition 5.2 [Semantic Equivalence modulo Abstraction] Let l and k be
state transition sequences, l, k ∈ A∞. l is semantically equivalent to k modulo
the abstraction functions f and g if Tf (l) and Tg(k) are similar. �

With this definition, we prove in Subsection 6.3 that the semantics of the
two programs in Figure 3 are semantically equal if one forgets about the values
of the auxiliary variables i and s.

13

Glesner, Leitner, Blech

6 Correctness of Program Transformations

In this section, we demonstrate the usefulness of our coalgebraic approach
to programming language semantics and correctness proofs of program trans-
formations by verifying the transformations discussed by the motivating ex-
amples in Section 2. For this purpose, we have specified the semantics of a
simple while-language in Isabelle/HOL by formalizing the rules given in Sub-
section 4.1. A state is defined as a function State : Var → N that maps
variables to natural numbers. Moreover, we have specified the function step
that formalizes execution of a single statement and returns the new statement
and new state where computation continues: step : (Statement , State) ⇀
(Statement , State). Its result is ⊥ if there is no successor state. This tran-
sition function allows us to corecursively define the operational semantics of
programs in our example language by assigning each configuration (each state
and continuation program) a potentially infinite state transition sequence:

state_sequence :: "Configuration ⇒ State item llist"

state_sequence_def: "state_sequence C == llist_corec C step"

In this section, we show that the transformations introduced in Section 2 can
be verified based on this coalgebraic semantics and by employing the similar-
ity relations defined in Section 5. In Subsection 6.1, we start with a standard
bisimulation proof to show that unreachable code can be eliminated, cf. Fig-
ure 1. We continue in Subsection 6.2 by using collapsings to verify the shifting
of loop-invariant code out of loops, cf. Figure 2. Finally, in Subsection 6.3, we
demonstrate how abstractions can be used when transformations involve the
elimination of program variables, cf. Figure 3.

6.1 Correctness Proofs involving the Classical Coinductive Case

Consider the following program template:

PS := while true do i := i + 1 od; S

where S is an arbitrary statement obviously never reached. Hence, the seman-
tics of PS should be independent of S. We prove this by verifying that the
two state transition sequences of arbitrary instantiations S1 and S2 of S are
equal:

∀S1,S2,σ∈State. seq(PS1 , σ) = seq(PS2 , σ)

Proving this statement by showing that the two state transition sequences
are in a bisimulation relation is straightforward. The configuration of PS can
only have one of two continuations: PS itself, when the body of the loop
has just been evaluated, and PE

S := (i := i + 1; while true do i := i +
1 od; S), when the condition which is always true has been checked in the
preceding step. During program execution, the continuation of this program
infinitely alternates between these two continuations and the thereby defined
state transition sequence is independent of S. For details of the coinductive

14

Glesner, Leitner, Blech

proof in Isabelle/HOL that seq(PS1 , σ) = seq(PS2 , σ) cf. [Lei05].

6.2 Correctness Proofs involving Collapsings

In the preceding subsection, the state sequences of the two programs were
actually equal. Obviously, this is not always the case. As example consider
the extraction of loop-invariant code in Figure 2. For its verification, we need
to show (where P1 and P2 are the two programs in Figure 2):

∀σ∈State seq(P1, σ) ≈ seq(P2, σ)

In such correctness proofs of program transformations within Isabelle/HOL,
the relation ≈ (cf. Subsection 5.1) comes in handy. To show that two lazy
lists are similar, it suffices to show that there exists a set of lazy list pairs that
contains (x, y) such that the coinduction rule of the relation ≈ holds:

absRel.coinduct : [[(a , b) ∈ X;
∧
z. z ∈ X =⇒ z = (♦, ♦)

∨ (∃ L M p q. z = (p@L, q@M) ∧ p∼=q ∧ ((L, M) ∈ X ∨ L ≈ M))]]
=⇒ a ≈ b

It is often straightforward to find such a set X. In most cases, the pairs
consisting of the traces of the two programs to be shown to be equivalent (all
state lists that the programs pass) can be constructively specified and have
the desired properties even if they are infinite. These proofs typically make
use of the fact that one can “stay in X forever”. In our example verification,
we choose:

X =
⋃
σ

{(seq(P1, σ), seq(P2, σ)}

In Isabelle/HOL, we have verified that ∀(x,y)∈X x ≈ y which is the desired
result. For proof details, we refer to [Lei05].

6.3 Correctness Proofs involving Abstractions

With the definition of semantic equivalence modulo abstractions, cf. Defini-
tion 5.2, we have a method to relate different state transition sequences with
each other. The utilized abstraction functions can rename variables, project
onto only the interesting ones, or put the computed values into relation (e.g.
if one program computes its results with respect to metric and the other with
respect to non-metric units), just to mention a few of the useful possibilities.
Together with collapsings, they allow us to relate even infinite state transition
sequences.

Example 6.1 Consider again the programs in Figure 3. Their semantics
is described by finite and infinite state transition sequences in A∞ whereby
each state is a mapping of the variables contained in the program to their
current values (which are undef if no definition has occurred yet). We define
an abstraction function f : A → A by

15

Glesner, Leitner, Blech

f(a) = {(x = v) | (x = v) ∈ a ∧ x 6∈ {i, s}}
This function projects each state to its relevant part by ignoring the current
values for the non-interesting variables i and s.

It is straightforward to define a collapsing which contains (Tf (l), Tid(k))
whereby id : A → A denotes the identity function on A, l the semantics of
the first program and k the semantics of the second program in Figure 3. �

7 Related Work

Proving semantic equivalence of programs and systems, resp., has been in-
tensively investigated in the area of compiler verification. Early research on
compiler verification was carried out in the Boyer-Moore theorem prover con-
sidering the translation of the programming language Piton [Moo89]. The ger-
man Verifix project investigated the construction of correct compilers without
performance loss, see [GGZ04] for an overview. Recent work has concentrated
on transformations taking place in compiler frontends. The formal verification
of the translation from Java to Java byte code and formal byte code verifi-
cation was investigated in [KN03]. This latter work was preceeded by the
work on the formalization of Java and the proof of its type safety within the
theorem prover Isabelle/HOL [NvO98]

Lately, also coalgebraic methods have been used successfully in the spec-
ification of and reasoning about programming languages and systems. In
[HHJT98,Hui01], the semantics of object-oriented programming languages has
been defined coalgebraically. The goal of the VFiasco project [HST02] is the
verification of an operating system with coalgebraic methods. [RTJ01] de-
scribes the coalgebraic class specification language CCSL.

Coalgebraic proof methods are not the only formalism capturing the char-
acteristics of semantics for non-terminating programs. One can also use la-
beled transition systems [Mil95]. Bisimulation can be used within both for-
malisms. Our notion of bisimulation with collapsings (operating on coalgebraic
datatypes) und the notion of weak bisimulation [Mil95] (operating on labeled
transition systems) may be used for the same purposes: defining program
equivalence up to observable steps.

In our own work [BGG05] we have proved a dead code elimination algo-
rithm as used in compilers correct using bisimulation on Kripke structures.
In [Gle04], we describe how coalgebras and coinduction may be used in com-
piler verification. Finally, our work on formalizing and transforming data flow
dependent computations [BGLM05] also shows, as the work presented in this
paper, that the choice of formalization is vital for the proof success when using
theorem provers.

16

Glesner, Leitner, Blech

8 Conclusions

We have presented a novel framework for the coalgebraic verification of pro-
gram equivalence. By assigning each program an element of a suitable final
coalgebra, we have defined semantics also for non-terminating programs. By
verifying simple, yet typical, also non-refining optimizations in compilers, we
have shown that our framework is able to formalize correctness proofs for trans-
formations found in modern optimizing compilers. We have also shown how
we have formalized this framework together with the correctness proofs within
the theorem prover Isabelle/HOL. In particular, we have presented two differ-
ent notions of correctness and proved their equivalence within Isabelle/HOL.
While the first notion captures very well the mathematical intuition, the sec-
ond is better suited for mechanized proofs. With these results we have con-
tributed to the question how formalizations within theorem provers are to be
chosen in order to simplify mechanized proofs and to reduce verification costs.

To be able to also relate programs with not exactly the same state transi-
tion behavior, we have introduced two kinds of similarity relations (collapsings
and semantic equivalence modulo abstractions). With the notion of collaps-
ings, we relate pairs of state transition sequences which contain corresponding
finite subsequences of consecutive identical states which might be of different
length. In a collapsing, we regard each such finite subsequence with identical
states as a single state. In addition, the notion of semantic equivalence mod-
ulo abstractions allows us to relate pairs of state transition sequences which
both can be brought down to a common denominator by applying abstrac-
tion functions element-wise on them. These two notions, collapsings together
with abstractions on state transition sequences, are a powerful instrument in
the verification of semantic equivalence. With them, our definition of seman-
tic equivalence is entirely based on the semantics side, not on any syntactic
criterion. Every transformation is correct (with respect to some abstraction
functions) if the abstractions of the state transition sequences of the original
and the transformed program are contained in a suitable collapsing. Even
two syntactically completely unrelated programs can be semantically equiv-
alent with respect to a given abstraction. The question how the abstraction
function is to be chosen depends on the context, i.e. on the question what we
want to consider as being semantically equivalent. We are convinced that this
framework for the verification of program or system transformations, resp.,
can also be applied in other areas of software engineering as well. It is subject
of future work to further explore this.

References

[BGG05] Jan Olaf Blech, Lars Gesellensetter, and Sabine Glesner. Formal
Verification of Dead Code Elimination in Isabelle/HOL. In Proc.3rd
IEEE Int’l Conf. on Software Engineering and Formal Methods, 2005.

17

Glesner, Leitner, Blech

IEEE Comp. Soc. Press.

[BGLM05] Jan Olaf Blech, Sabine Glesner, Johannes Leitner, and Steffen Mülling.
A comparison between two formal correctness proofs in Isabelle/HOL.
In Proc. Workshop Compiler Optimization meets Compiler Verification
(COCV 2005). Elsevier, April 2005.

[GGZ04] Sabine Glesner, Gerhard Goos, and Wolf Zimmermann. Verifix:
Konstruktion und Architektur verifizierender Übersetzer (Verifix:
Construction and Architecture of Verifying Compilers). it - Information
Technology, 46:265–276, 2004. Print ISSN: 1611-2776.

[Gle03] Sabine Glesner. ASMs versus Natural Semantics: A Comparison with
New Insights. In Abstract State Machines - Advances in Theory and
Applications, Proc. 10th Int’l Workshop, ASM 2003, 2003. Springer LNCS
Vol. 2589.

[Gle04] Sabine Glesner. A Proof Calculus for Natural Semantics Based
on Greatest Fixed Point Semantics. In Proc. Workshop Compiler
Optimization meets Compiler Verification (COCV 2004), 2004. Elsevier,
Electronic Notes in Theoretical Computer Science (ENTCS).

[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification
and Validation Methods, pages 231–243. Oxford University Press, 1995.

[HHJT98] Ulrich Hensel, Marieke Huisman, Bart Jacobs, and Hendrik Tews.
Reasoning about Classes in Object-Oriented Languages: Logical Models
and Tools. In Progr. Lang. and Systems - ESOP’98, 1998. Springer LNCS
Vol. 1381.

[HST02] Michael Hohmuth, Shane G. Stephens, and Hendrik Tews. Applying
source-code verification to a microkernel – The VFiasco project. In
Proceedings of the 10th SIGOPS European Workshop, 2002.

[Hui01] Marieke Huisman. Reasoning about Java programs in higher order logic
using PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

[JR97] Bart Jacobs and Jan Rutten. A Tutorial on (Co)Algebras and
(Co)Induction. EATCS Bulletin, 67:222–259, 1997.

[KN03] Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers.
Theoretical Computer Science, 298:583–626, 2003.

[Lei05] Johannes Leitner. Coalgebraic Methods in the Verification of Optimizing
Program Transformations Using Theorem Provers. Minor Thesis
(Studienarbeit), University of Karlsruhe, 2005.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, 1995.

[Moo89] J. Strother Moore. A Mechanically Verified Language Implementation.
Journal of Automated Reasoning, 5(4):461–492, 1989.

18

Glesner, Leitner, Blech

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, LNCS Vol. 2283,
2002.

[NvO98] Tobias Nipkow and David von Oheimb. Javalight is Type-Safe – Definitely.
In Proc. 25th ACM Symp. Principles of Progr. Languages, 1998. ACM
Press.

[Pau04] Lawrence C. Paulson. A Fixedpoint Approach to
(Co)Inductive and (Co)Datatype Definitions, 2004. www.cl.cam.ac.uk/
Research/HVG/Isabelle/dist/Isabelle2004/doc/ind-defs.pdf.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics.
Report DAIMI FN-19, Comp. Sc. Department, Aarhus University,
Denmark, 1981.

[RTJ01] Jan Rothe, Hendrik Tews, and Bart Jacobs. The Coalgebraic Class
Specification Language CCSL. J. Univ. Comp. Sc. (J.UCS), 7(2):175–
193, 2001.

[Wen02] Markus Wenzel. Isabelle/Isar – A Versatile Environment for Human-
Readable Formal Proof Documents. PhD thesis, Institut für Informatik,
Technische Universität München, 2002.

19

	Introduction
	Motivation: Verifying Compiler Transformations
	(Co)Algebras and (Co)Induction
	Coalgebras and the Coinductive Proof Principle
	Coalgebras and Coinduction in Isabelle/HOL

	Programs as Elements of Coalgebras
	Structural operational semantics (SOS)
	Coalgebraic Semantics for SOS

	Similarity Relations
	Collapsing Relations
	Abstractions from Irrelevant Details

	Correctness of Program Transformations
	Correctness Proofs involving the Classical Coinductive Case
	Correctness Proofs involving Collapsings
	Correctness Proofs involving Abstractions

	Related Work
	Conclusions
	References

